

CHINMAY AMRUTKAR

623-217-7539 | chinmay.amrutkar@asu.edu | chinmayamrutkar.netlify.app

linkedin.com/in/chinmay-amrutkar-153375209 | Google Scholar | github.com/ChinmayAmrutkar

Education

Arizona State University, Tempe, AZ

Aug 2024 – Present

Master of Science, Robotics and Autonomous Systems (AI)

- CGPA: 3.92/4.0 | **Achievements:** NAMU University Scholarship (\$10,000), Engineering Fellowship (\$1000)
- **Coursework:** Artificial Intelligence, Robotics Systems, Space Robotics and AI, Machine Vision and Pattern Recognition, Natural Language Processing, Mechatronics, Embedded Machine Learning

MIT World Peace University, Pune, India

Aug 2019 – May 2023

Bachelor of Technology, Robotics and Automation

- CGPA: 9.77/10.0 | **Achievements:** Graduated as a Gold Medalist, 3 times merit scholarship holder (\$3750)

Skills

Languages: Python, C++, MATLAB, C, Java, JavaScript

AI/CV Frameworks: PyTorch, TensorFlow, OpenCV, Point Cloud Library (PCL), Scikit-learn, Hugging Face

Robotics, Controls & Simulation: ROS 1/2, Gazebo, Simulink, Stateflow, PX4 Autopilot, MoveIt, Control Systems (PID, LQR), System Dynamics, Adams, VTD

Hardware & Embedded: Embedded Systems, Firmware Development, Schematic Design, PX4 Autopilot, Raspberry Pi

Tools & Technologies: Git, Docker, Linux, JIRA, SolidWorks, Agisoft Metashape

Vision Competencies: 3D Object Detection, Neural Radiance Fields (NeRF), SLAM, Image Segmentation, Feature Detection & Matching (SIFT, ORB), Camera Calibration, Epipolar Geometry, Frequency Domain Analysis (FFT)

Publications

Towards Robotic Trash Removal with Autonomous Surface Vessels

2025

Robots in the Wild Workshop, IEEE International Conference on Robotics and Automation (ICRA) 2025.

A State-of-the-Art Review on Robotics in Waste Sorting

2023

International Journal on Interactive Design and Manufacturing (IJIDeM), Springer.

Overview of Autonomous Vehicles and Its Challenges

2022

Techno-Societal 2022. ICATSA 2022, Springer, Cham.

Research Interests: Embodied AI, Sim-to-Real Transfer Learning, Real-Time 3D Perception for Autonomous Navigation, Generative Models for Scene Understanding, Context Engineering Vision-Language Models and Efficient Neural Architectures for Edge Deployment.

Academic Projects

Visual Grounding & Hallucination Mitigation in VLMs on VideoGameBench

Dec 2025

Benchmark

- Conducted a failure analysis of Vision-Language Models (VLMs) in dynamic environments of VideoGameBench, identifying critical deficits in spatial awareness and visual hallucination loops.
- Developed a context engineering pipeline to improve perceptual grounding in low-resolution environments, integrating a visual grid overlay strategy to assist the model in spatial localization tasks.
- Deployed a multi-modal agent (Visual Perception + Language Reasoning) that outperformed baseline agents by successfully navigating complex game maps through improved state-tracking and visual context retrieval.

TinyML Audio Classifier for Absolutist Language Detection

Nov 2025

- Designed and trained a Depthwise Separable CNN (DS-CNN) for keyword spotting, achieving 93% test accuracy by engineering a hybrid dataset of 13,000+ samples (custom recordings + Google Speech Commands).
- Optimized the model for deployment on an Arduino Nano 33 BLE Sense by performing INT8 quantization, reducing model size to 18 KB to fit strictly within Flash memory constraints.
- Implemented a robust data preprocessing pipeline including synthetic silence generation and background noise mixing to ensure high model generalization in noisy real-world environments.

TinyML: Real-Time Sensor-Agnostic Posture Detection

Nov 2025

- Developed an end-to-end TinyML pipeline using TensorFlow to train a 1D-CNN for human activity recognition, achieving 99.12% accuracy by implementing orientation-invariant data augmentation.
- Engineered a sensor-agnostic inference engine capable of dynamically normalizing inputs to run predictions using either Accelerometer, Gyroscope, or Magnetometer data at 50Hz.

Enhanced Real-Time 3D Object Detection from LiDAR Point Clouds

Apr 2025

- Integrated a CBAM attention module into an SFA3D (PyTorch) backbone to enhance 3D object detection of occluded

pedestrians and cyclists in sparse LiDAR point clouds from the KITTI dataset.	
• Validated that the lightweight attention mechanism qualitatively improved detection of challenging objects with a key factor for autonomous system safety while maintaining real-time inference speeds.	Apr 2025
3D Volumetric Reconstruction of Meteorite using NeRF Variants	Apr 2025
• Reconstructed a high-fidelity 3D model of a real-world object by training multiple Neural Radiance Field (NeRF) variants (Instant-NGP, Nerfacto) on a custom 55-image dataset with poses estimated via Metashape.	
Perception-Driven Autonomous Trash Collection with a Robotic Boat	May 2025
• Designed a ROS-Gazebo simulation pipeline on the Heron USV to perform boustrophedon (lawnmower-style) surveys with constraint-aware detours for opportunistic trash interception, ensuring scientific sampling integrity was preserved through bounded lateral deviation.	
• Validated the perception-driven control logic in 10 Monte Carlo simulation trials with 100% waypoint recovery and 54% collection rate and separately deployed YOLOv8 on the R/V Karin Valentine ASV to confirm real-time trash detection feasibility under natural lighting.	
Autonomous Drone for Vision Based Geological Mapping and Landing	Apr 2025 - May 2025
• Developed a ROS 2 node for autonomous lawnmower (boustrophedon) survey using PX4 SITL and onboard RGB-D input which performed real-time environment mapping via RTAB-Map and logged 3D terrain data for post-analysis.	
• Detected cylindrical geological features using ArUco markers and executed a controlled landing sequence using altitude-based selection and velocity-smooth descent.	
Autonomous Moving Platform Tracking and Landing with a Drone	Apr 2025
• Implemented a robust visual servoing system in Simulink for a Parrot Mambo drone, using classical computer vision to generate real-time control commands for tracking a moving target.	
• Designed and tuned Stateflow logic for reliable state transitions (e.g., tracking, aligning, landing), enabling robust target locking and velocity compensation based on visual feedback.	
Autonomous Maze-Solving Robot with Digital Twin (MyCobot Pro 600)	Dec 2025
• Designed a complete vision-to-motion pipeline by solving a physical maze using OpenCV (Python), mapping the path to robot coordinates, and converting waypoints to joint angles via MATLAB-based inverse kinematics.	
• Simulated and visualized robot motion in a digital twin using URDF and animated execution paths; prepared TCP-ready joint commands with >95% execution accuracy.	
Design and Prototyping of Robotic Arm for Waste Sorting using Computer Vision	Sep 2022-Nov 2022
• Built a 4 DOF robotic arm with Arduino control for robotic manipulation, capable of sorting recyclables (glass, paper, cardboard, tin cans) with a payload capacity of 200 grams, addressing real-world sustainability challenges.	
• Trained a deep learning model (YOLOv7) on 2000+ images for object detection.	
Quadcopter Flight Control System (Simulink)	Apr 2025
• Designed and simulated a full 6-DOF flight controller for a quadrotor using model-based design in Simulink, implementing nested PID loops for stable attitude and position control.	
• Developed motor mixing logic to translate controller outputs into individual rotor commands and validated the system's stability and responsiveness by tracking its trajectory in a 3D visualization.	
Low-Level Admittance Controller for Risky Teleoperation (Ongoing)	May 2025
• Developed a shared autonomy framework for the Fetch robot, using admittance control to ensure stable 2D locomotion and responsive grasping via Novint Falcon under high-latency conditions.	
• Architected a comprehensive data collection pipeline to record synchronized state-action pairs, serving as the foundation for expert demonstration learning.	
• Engineered the system to transition from manual teleoperation to Inverse Reinforcement Learning (IRL) to model operator cost functions for improved safety and stability.	
STaR: Self-Taught Reasoner for Enhanced LLM Reasoning	Oct 2025
• Implemented the Self-Taught Reasoner (STaR) methodology to fine-tune a Llama-3.2-3B model, boosting its mathematical reasoning accuracy on the GSM8k benchmark to 63.38%.	
• Engineered a data bootstrapping pipeline using PyTorch and the Hugging Face ecosystem to programmatically generate a high-quality training set by having the model create, verify, and self-correct its own reasoning paths.	
• Validated that the STaR approach successfully overcame the <i>catastrophic forgetting</i> observed in standard fine-tuning, outperforming both the SFT baseline (57.32%) and the original pre-trained model with zero-shot CoT (59.89%).	
MayBot-Personal Portfolio AI Agent	Jul 2025
• Developed and deployed a conversational AI agent designed to provide interactive information about my skills and experience.	
• Engineered a secure backend utilizing a Netlify Function and environment variables to protect the Gemini API key. And built the user-facing chat widget with HTML, Tailwind CSS, and JavaScript, including state management, API calls, and Markdown rendering.	

Pitch Perfect - Real-Time Feedback Tool for Job Seekers (24-Hour Hackathon Project)

Apr 2025

- Built a Gradio-based NLP tool in 24 hours using whisper.cpp, Vander, and Olama to transcribe interview videos, analyze sentiment and relevance, and deliver real-time feedback for job seekers.

AI Scheduling Assistant

Sept 2025

- Built a cloud-native full-stack application integrating Google Gemini API, Google Calendar API, and Google Cloud Functions with secure IAM authentication for conversational event management.
- Designed and deployed LLM-powered prompt engineering to classify user intent and parse unstructured, multi-day text into structured JSON, enabling seamless chatbot-driven scheduling.

Work Experience**Graduate Student Assistant**, Center for Hydrologic Innovations, ASU – AZ, USA

Jan 2026 – Present

- Developing a predictive machine learning framework to estimate snow depth and snow water equivalent, facilitating data-driven water resource management.
- Architecting an end-to-end ML pipeline, including large-scale dataset curation, model training, and the development of custom data visualization functions.
- Collaborating with the Salt River Project (SRP) to deliver monthly technical reports and progress updates, ensuring model outputs align with regional hydrologic requirements.
- Implementing robust data analysis workflows to translate complex environmental sensor data into actionable insights for snowpack monitoring.

Graduate Engineer Trainee, Jabil Circuit India Private – Pune, India

Jan 2024 – Jul 2024

- Engineered a Wrist Band Monitoring System for ESD compliance by integrating fault-tolerant hardware with critical manufacturing lines, ensuring zero added downtime through a hot-swappable, automation-ready design; collaborated with stakeholders to understand requirements and align system features accordingly.
- Identified and proposed automation opportunities across the production line, presenting actionable improvements to enhance efficiency, safety, and compliance within the electronics manufacturing workflow.
- Communicated effectively with cross-functional teams in test, production, and quality to align system behavior with factory workflow requirements, reinforcing operator accountability and audit compliance.

Automation Engineer, Flexible Softwares – Pune, India

Aug 2023 – Jan 2024

- Architected and developed a Python-based data pipeline to automate the extraction and structuring of critical information from multiple unstructured technical documents.
- Worked directly with the client to define data requirements and validation criteria, delivering a robust software solution that significantly reduced manual data processing and improved workflow productivity.

R&D Intern, Hexagon Manufacturing Intelligence – Pune, India

Feb 2023 – Aug 2023

- Designed and automated over 1000 end-to-end test cases using Sikuli (an OCR-based tool), thereby accelerating regression testing workflows across Virtual Test Drive and MSC Adams environments.
- Developed a Python-based script generation tool to empower non-technical users in test automation, enhancing cross-functional productivity by 40% and reducing manual scripting overhead.

Leadership and Volunteer Work**Research Volunteer**, CHART Lab (Center for Human, AI, and Robot Teaming), ASU

Jan 2025-Present

- Supporting research in human-AI-robot teaming for mission-critical applications; gaining hands-on experience with platforms like FETCH, Husky, UR5, ABB YuMi, and TurtleBot.

Volunteer, Southwest Robotics Symposium - Arizona State University

Oct 2024

- Welcomed attendees, managed guest check-ins, and led guided tours across ASU's robotics labs to showcase ongoing research and foster community engagement.

Team Captain, Electric Vehicle Design & Manufacturing Team

Jan 2020-Jan 2023

- Led a 14-member interdisciplinary team in designing a competition-grade electric vehicle; secured 1st place in acceleration through bold system-level innovation and cross-functional coordination.